Homology Modeling Study of Bovine μ-Calpain Inhibitor-Binding Domains
نویسندگان
چکیده
The activated mammalian CAPN-structures, the CAPN/CAST complex in particular, have become an invaluable target model using the structure-based virtual screening of drug candidates from the discovery phase to development for over-activated CAPN linked to several diseases, such as post-ischemic injury and cataract formation. The effect of Ca²⁺-binding to the enzyme is thought to include activation, as well as the dissociation, aggregation, and autolysis of small regular subunits. Unfortunately, the Ca²⁺-activated enzyme tends to aggregate when provided as a divalent ion at the high-concentration required for the protease crystallization. This is also makes it very difficult to crystallize the whole-length enzyme itself, as well as the enzyme-inhibitor complex. Several parameters that influence CAPN activity have been investigated to determine its roles in Ca²⁺-modulation, autoproteolysis, phosphorylation, and intracellular distribution and inhibition by its endogenous inhibitor CAST. CAST binds and inhibits CAPN via its CAPN-inhibitor domains (four repeating domains 1-4; CAST1-4) when CAPN is activated by Ca²⁺-binding. An important key to understanding CAPN1 inhibition by CAST is to determine how CAST interacts at the molecular level with CAPN1 to inhibit its protease activity. In this study, a 3D structure model of a CAPN1 bound bovine CAST4 complex was built by comparative modeling based on the only known template structure of a rat CAPN2/CAST4 complex. The complex model suggests certain residues of bovine CAST4, notably, the TIPPKYQ motif sequence, and the structural elements of these residues, which are important for CAPN1 inhibition. In particular, as CAST4 docks near the flexible active site of CAPN1, conformational changes at the interaction site after binding could be directly related to CAST4 inhibitory activity. These functional interfaces can serve as a guide to the site-mutagenesis in research on bovine CAPN1 structure-function relationships for the design of small molecules inhibitors to prevent uncontrolled and unspecific degradation in the proteolysis of key protease substrates.
منابع مشابه
Human μ Opioid Receptor Models with Evaluation of the Accuracy Using the Crystal Structure of the Murine μ Opioid Receptor
Models of the human μ opioid receptor were constructed using available G-protein-coupled receptor (GPCR) structures using homology (comparative) modeling techniques. The recent publication of a high-resolution crystal structure of a construct based on the murine μ opioid receptor offers a unique opportunity to evaluate the reliability of the homology models and test the relevance of introducing...
متن کاملHomology Modeling of Human Alpha-Glucosidase Catalytic Domains and SAR Study of Salacinol Derivatives
Maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) belong to human intestinal alpha-glucosidase and their N-terminal side catalytic domains are called NtMGAM and NtSI, and their C-terminal side catalytic domains are called CtMGAM and CtSI. As an antidiabetic, alpha-glucosidase inhibitor is required to bind to all of these domains to inhibit disaccharides hydrolysis. Salacinol and kotalanol...
متن کاملThe influence of caspase-3 on the calpain enzyme system during meat aging1
Tenderness is a key component of palatability, which influences consumers’ perception of meat quality. There are a variety of factors that contribute to variations in tenderness, including postmortem proteolysis. A more complete understanding of this biological mechanism regulating tenderness is needed to ensure consistently tender beef. Numerous reports indicate μ-calpain is primarily responsi...
متن کاملComparison of the Lipophosphoglycan 3 Gene of the Lizard and Mammalian Leishmania: A Homology Modeling
Background: Lipophosphoglycan 3 (LPG3) is required for the LPG assembly, a well known virulent molecule. In this study, the LPG3 gene of the lizard and mammalian Leishmania species were cloned and sequenced. A three-dimensional structure (3D) for the target sequence was also predicted by comparative (homology) modeling. Materials and Methods: An optimization PCR amplification was performed o...
متن کاملIn Silico Structure Analysis of Type 2 Diabetes Associated Cysteine Protease Calpain-10 (CAPN10)
Calpain-10 (CAPN10) is a cysteine protease that is known to hydrolyze specific substrates significant for calcium-regulated signaling pathways and it's activated by intracellular calcium (Ca). The calpain10 is known to be involved in the cellular degenerative processes that characterize several diseases such as cancer, stroke and heart attack. The role of calpain10 was recently identified and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2014